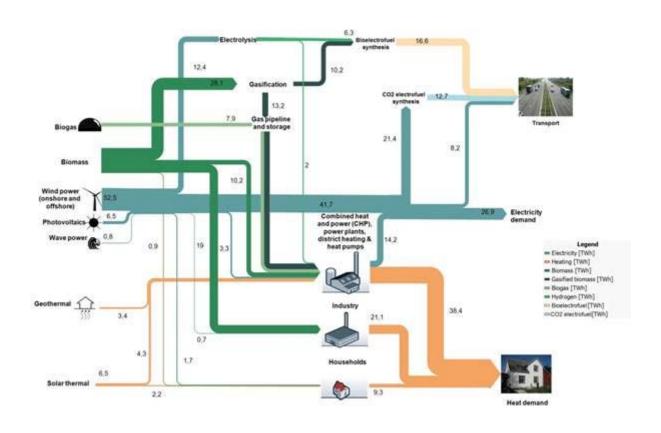


Market Structures and Smart Energy Systems


Jakob Zinck Thellufsen, Søren Djørup Aalborg Universitet

100% renewable energy systems

 3^{rd} international conference on SMART ENERGY SYSTEMS AND 4^{TH} GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

Wind Power and Current Market **Structures: Theoretically**

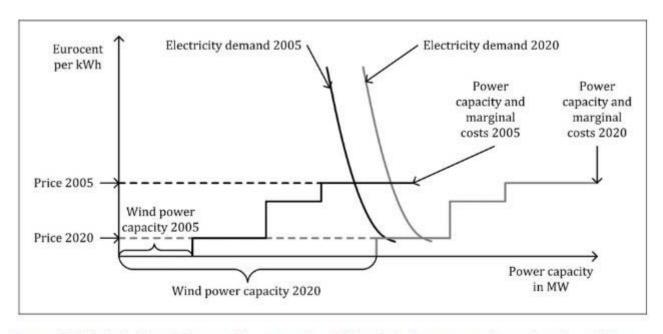
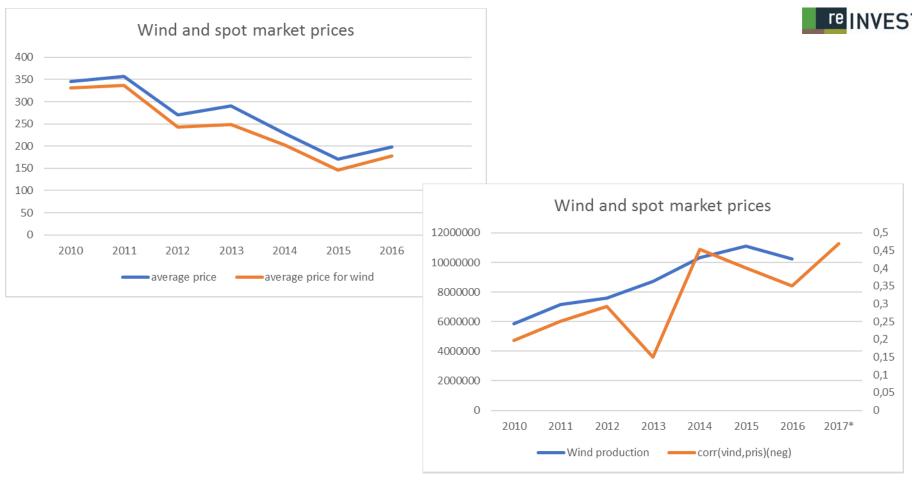


Figure 4. Principle chart: The possible economic suicide of wind power, or the merit order effect (Hyelplund et al., 2013).



3rd international conference on SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

Wind Power and Current Market **Structures: Empirically**

3rd international conference on SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

Wind Power and Current Market Structures

To what extent can wind power be sustained through demand side initiatives, given the current market structures?

Our expectation: It is not enough to sustain current market structures in a 100 renewable energy system.

Research question?

"Is the current market structure able to sustain the private economy of wind power in a 100% renewable energy system?"

Methods

- 1) Analysing a 100% renewable smart energy system
- Identify the marginal producing unit in each hour
- Identify the marginal cost in each hour
- Summarize cost and earning
- 5) Calculate private return to capital for wind power investors

EnergyPLAN and IDA Energy Vision

Using IDA Smart Energy Vision to represent the energy system

Assumption is a fully connected energy system

Uses technical simulation to create a balanced system

Scenarios

The marginal price is based on fuel costs:

- 1) Low fuel costs
- 2) Medium fuel costs
- 3) High fuel costs

Two technology cost scenarios:

- 1) 2015 prices
- 2) 2050 prices

 3^{rd} international conference on SMART ENERGY SYSTEMS AND 4^{TH} GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

Key figures

Renewable Capacity

- 5000 MW onshore Wind
 - 16.2 TWh annual production
 - Payment in 55% of the hours
- 14000 MW offshore wind
 - 63.76 TWh annual production
 - Payment in 55% of the hours

Key figures

Marginal production prices (EUR/MWh)					
	Low fuel costs	Medium fuel costs	High fuel costs		
Running power plant	52	66	79		
Running central CHP	44	59	68		
Running decentral CHP	49	64	73		

Investment and O&M costs							
	Total onshore wind investment [M€/MW]	Annual onshore wind O&M [M EUR]	Total offshore wind investment [M€/MW]	Annual offshore wind O&M [M EUR]			
2015 prices	1.07						
2050 prices	0.83	140	1.39	590			

 3^{rd} international conference on SMART ENERGY SYSTEMS AND 4^{TH} GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

Results

Offshore Wind					
	Low fuel costs	Medium fuel costs	High fuel costs		
2015 prices	N/A	N/A	-11%		
2050 prices	-5%	-2%	0%		

Onshore Wind					
	Low fuel costs	Medium fuel costs	High fuel costs		
2015 prices	N/A	-12%	-7%		
2050 prices	-10%	-4%	-2%		

Conclusions

 The internal rate of return does not suggest any feasible private investments

This is in a system with large amount of system integration

We need to consider how to make private investments feasible

