Quantifying the impact of district heating, heat pumps and electric vehicles in Italy, Romania and the UK

Andrei David
David Connolly
Susana Paardekooper
Kenneth Hansen

Sustainable Energy Planning Group
Department of Planning
Aalborg University
Choosing the countries

Same measures for all countries
Methods and scenarios

- **Scenario 1 – Business-as-usual 2050**
 - Heat savings are added (30% Italy; 50% Romania; 40% UK)

- **Scenario 2 – District heating**
 - Stratego recommendations (60% Italy; 40% Romania; 70% UK)
 - Large-scale heat pumps

- **Scenario 3 – Individual heat pumps**
 - Cover remaining heat demands

- **Scenario 4 – Electric vehicles**
 - 50% of the transport demand

- Wind and solar integrated separately in steps of 10% of EU-CPI electricity demand until lowest PES, CO2 emissions and costs are achieved

3rd international conference on
SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING
Copenhagen, 12-13 September 2017

www.4dh.eu www.reinvestproject.eu www.heatroadmap.eu
Changes in the energy system

Resources
- Wind etc.
- Fuels
- Solar etc.

Conversion
- Engines & Motors
- Fluctuating Electricity
- Electrofuels
- CHP
- Fluctuating Heat

Exchange and Storage
- Fuel Storage
- Power Exchange
- Electricity Storage
- Thermal Storage

Demand
- Mobility (Vehicles)
- Flexible Electricity
- Cooling
- Heating

Energy PLAN
Advanced energy system analysis computer model
Main results – gains on all metrics

3rd international conference on
SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING
Copenhagen, 12-13 September 2017

www.4dh.eu www.reinvestproject.eu www.heatroadmap.eu
UK – wind integration based on lowest costs

Wind integration (% of EU CPI el. demand)

BAU – 30%
DH – 30%
HP – 30%
EV – 40%
Italy - wind integration based on lowest costs

Wind integration (% of EU CPI el. demand)

BAU – 30%
DH – 30%
HP – 30%
EV – 40%
New heat production
Part conclusions

• All measures bring improvements in all countries
• In general, for all countries:
 – DH and HP improve efficiency
 – EVs reduce the costs
 – All measures reduce CO2 emissions

BUT

The measures do not (or slightly) integrate more RES compared to BAU

Minimum grid regulation share has huge impact on results
Italy

• With CHP – PP stabilisation of 30%

<table>
<thead>
<tr>
<th></th>
<th>BAU</th>
<th>DH</th>
<th>HP</th>
<th>EV</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of EU-CPI</td>
<td>30%</td>
<td>30%</td>
<td>30%</td>
<td>40%</td>
</tr>
<tr>
<td>MW</td>
<td>63.500</td>
<td></td>
<td></td>
<td>84.500</td>
</tr>
</tbody>
</table>

• With RES stabilisation share of 50%

<table>
<thead>
<tr>
<th></th>
<th>BAU</th>
<th>DH</th>
<th>HP</th>
<th>EV</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of EU-CPI</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
<td>60%</td>
</tr>
<tr>
<td>MW</td>
<td>105.500</td>
<td></td>
<td></td>
<td>126.500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>BAU</th>
<th>DH</th>
<th>HP</th>
<th>EV</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of EU-CPI</td>
<td>60%</td>
<td>60%</td>
<td>60%</td>
<td>70%</td>
</tr>
<tr>
<td>MW</td>
<td>151.500</td>
<td></td>
<td></td>
<td>176.500</td>
</tr>
</tbody>
</table>
Conclusions so far...

• Current grid regulation measures limit the amount of wind and solar in energy system

• Heat sector improvements do not or slightly increase the RES amount, but considerably improve efficiency

• More RES requires changing how we manage our electricity grids (?)
Thank you!

Andrei David
Sustainable Energy Planning Group
Department of Planning