2nd International Conference on Smart Energy Systems and 4th Generation District Heating Aalborg, 27-28 September 2016

Modelling of low-carbon district heating: lessons learnt from a Danish and a Czech case

Sara Ben Amer-Allam, DTU (sbea@dtu.dk),
Daniel Møller Sneum, Stefan Petrović, Marie Münster

Background

- Horizon2020 project progRESsHEAT renewables locally and nationally in heating/cooling supply (http://www.progressheat.eu/)
 - Local modelling: identifying an optimal mix of heat savings,
 district heating (DH) expansion and individual heat supply
- Decarbonizing and expanding district heating important in municipal CO₂ reduction goals
- Heat pumps in DH
 - can improve flexibility needed to increase the share of intermittent RES
 - use available low-temperature heat sources

Case studies

 Focus: heat pumps, electric boilers and heat storage in local district heating systems in Helsingør and in Litomerice on the heat prices and CO₂ emissions

DH in Helsingør

 natural gas + connection to the neighbouring municipality (waste incineration +natural gas)

• DH in Litomerice

natural gas and brown coal

Local DH modelling with energyPRO

- commercial modelling software developed by EMD International
- techno-economic operation optimization, accounting for air temperature (heat demand), technical properties of units, maintenance costs, fuel prices, taxes and subsidies etc.
- optimization via an operation strategy defined by user or calculated automatically (minimizing the net production cost)

Cost elements for heat price

How do we use energyPRO?

share of RES, CO2 emissions...

More scenarios for 2030

- Helsingør (DK)
 - 1. BAU (Biomass CHP to be implemented in 2018)
 - 2. Heat pumps + storage
- Litomerice (CZ)
 - 1. BAU (coal+natural gas)
 - 2. Electric boilers
 - 3. Heat pumps + electric boilers
 - 4. Electric boilers + heat pumps + storage

Preliminary results

• Heat prices

• CO₂ emissions from DH

Heat price - Helsingør

CO2 emissions

Preliminary conclusions

Helsingør

- Least costly excl. taxes: heat pump + heat storage
- Least costly incl. taxes: BAU (biomass CHP)
- Lowest CO₂ emissions: BAU (assuming 100% RES biomass and not assigning CO₂ to its transport)
- Taxation is main obstacle for utility heat pumps to be viable

Litomerice

- Least costly excl. AND incl. taxes: electric boiler + heat pump +heat storage
- Lowest CO₂ emissions: electric boiler + heat pump +heat storage

Next steps

- This work: heat pumps work as base load, flexibility as interplay with heat storage-> Changing scenario setup
- Quantifying the value of flexibility framework for assessing flexibility of a district heating system
- CO₂ allocation between electricity and heat in CHPs- in DK: 200% rule or 125% rule, in other countries?
- Assumptions on CO₂ content of electricity in the future
- Heat demand correlation with electricity production from wind and solar

Thank you for your attention. Questions?

Sara Ben Amer-Allam, sbea@dtu.dk

