2nd International Conference on Smart Energy Systems and 4th Generation District Heating Aalborg, 27-28 September 2016

A critical analysis of the current primary energy assessment

Björn Karlsson, Mälardalen&Gävle University

AALBORG UNIVERSITY DENMARK 4th Generation District Heating Technologies and Systems

Conclusion

EU:s calculation of primary energy is not according to the laws of thermodynamics.

EU does not include the quality of the energy carrier

EU treat the heat a heat-pump absorb in the ambient as renewable solar energy. This is not correct.

Definition Primary Energy

1 kWh of electricity per kWh of hydropower

1 kWh of electricity per 2 kWh of Natural gas

1 kWh of electricity per 2,5 kWh of Coal

1 kWh of electricity per 1,8 kWh of "primary energy" (33% hydro-gas-coal)

Energies of different types and quality is summarized!

Energy quality-Exergi

The fraction which can be converted to work or electrical energy.

Energy quality-Exergi!

- Heat carriers are heat, fuel and electricity.
- They have different quality
- 1 kWh of electricty is a larger resource than 1 kWh of fuel
- 1 kWh of fuel is a larger resource than 1 kWh heat

Calculation of primary (heat) Energy use

- Today's method evaluates the heat value of the source
- 1 kWh of hydro power get the same value as 1kWh of a fuel or 1kWh of heat
- The resource hydropower is underestimated
- The resource waste heat from cogeneration is overestimated

Primary Heat Energy-100kWh

	Mass	Heating Value
H ₂	2,5kg	100kWh
CH ₄	6,5kg	100kWh
C	11kg	100kWh
Biofuel	25 kg	100kWh
Hydro power, Fall height 367m	100 000kg	100kWh
Heat, ΔT=86K, water	1000kg	100kWh

Primary exergi-100kWh

			41
Resource	Mass	ΔG/ΔH,	Exergy
		3	Value
H ₂	3,0 kg	0,83	100kWh
CH ₄	7,0kg	0,92	100kWh
С	11kg	1,0	100kWh
Bio fuel	?	?	100kWh
Hydro power, Fall	100 000kg	1,0	100kWh
height 367m			
Heat, ΔT=86K	4166kg	0,24	100kWh
(T _o =273K) water			

Primary exergi

• The use of an exergy evaluation overrates the quality of fuels

• It assumes that the fuel generates electricity in an ideal fuel cell

• A fuel cell exist only of hydrogen

Electric Efficiency

Energy source	Electric Efficiency
Hydro power	1
Natural gas	0,5
Coal	0,4
Bio fuel	0,33
Waste heat from CHP	0,15

Identical Resources=1kWh electricity

- 1 kWh of electricity
- 2kWh of Methane-Natural gas
- 2,5 kWh of coal
- 3 kWh of biofuel
- 6 kWh of waste heat from a CHP system

AALBORG UNIVERSITY Denmark

Primary electric energy-100kWh

Resource	Mass	Heating	Electric	Electric	th Generation District Heati Technologies and Systems
		Value	Efficiency	Value	
H ₂	5 <i>,</i> 0 kg	200kWh	0,5	100kWh	
CH ₄	13,0kg	200kWh	0,5	100kWh	
C	27,5 kg	250kWh	0,4	100kWh	
Biobränsle	71 kg	100kWh	0,35	100kWh	
Hydro power, Fall	100 00	100kWh	1,0	100kWh	
height 367m	Okg				
Heat <i>,</i> ΔT=86K	10	1000kWh	0,10	100kWh	
(T ₀ =273K) water	000kg				

Primary Electric factors

Energy source	Quality factors
Hydro power	3
Natural gas	1,5
Coal	1,2
Bio fuel	1,0
Waste heat from CHP	0,5

Primary Electric Energy

The use of primary electric energy is not decreased if power is generated from natural gas with 50% efficiency instead of from coal with 40% efficiency

The use of primary electric energy is decreased if the efficiency is increased when generated from one source

Heat pump, 1 kWh electricity => 3 kWh heat?

Heat pump-problems?

- EU-method gets problems with heat pumps since they generate more heat than they use electricity
- 1kWh of heat = 1 kWh electricity!

 Ambient heat is defined as renewable solar energy!

Ambient Heat?

EU define the heat a heat pump takes in the ambient as renewable solar energy!

Use of energy means that the energy is converted and exergy is used!

Ambient Heat?

- The ambient heat circulates in the system
- It starts and ends up at the same temperature
- No exergy of the ambient heat is consumed
- Exergy is only consumed by the compressor

Conclusion

EU:s calculation of primary energy is not according to thermodynamics.

EU does not include the quality of the energy carrier

EU treat the heat a heat pump absorb in the ambient as renewable solar energy. This is not correct.

