THE SOCIO-ECONOMIC PERSPECTIVE OF CONVERSION OF INDIVIDUAL HEATING TO DISTRICT HEATING

Sustainable Energy Planning and Management Thesis June 2016

Line Paulin Pedersen

Agenda

- Purpose of the project
- Methods and theoretical background
- Results
 - Fuel balance
 - CO2 emissions
 - Socio-Economic results
- Recommendations

Purpose of the project

Danish political goals: low emission society by 2050

- Integration of different energy sectors
- Heating planning
 - District heating or individual heating?
 - In a Socio-Economic perspective
 - Case: Aabybro

Case: Aabybro

Current production facilities

Scenarios

- Wood chips boiler
- Wood chips boiler and heat pump
- Solar thermal
- Solar thermal, pit storage and heatpump
- Geothermal, absorption heatpump
- Geothermal, elec. heatpump

Methods and theoretical background

- -Interviews
- -Modelling tool: energyPRO
- -Socio-Economic
 - Guidelines by the Danish Energy Agency

- An institutional economic approach

Parameters	Guidelines	Alternative
Calculation rate	4%	0%, 2% og 4%
Tax distortion loss	Included (20%)	Not included
Fuel cost	Based on the Guidelines	Electricity price is not based on the Guidelines
Emissions	Based on the Guidelines	Based on actual data and data from DCE
Emission costs	Based on the Guidelines. CO ₂ cost is based on the quota price.	CO ₂ cost is based on a real damage cost.
Job creation effect	Not clarified	Clarified

-Socio-Economic

- Guidelines by the Danish Energy Agency

- An institutional economic approach

Parameters	Guidelines	Alternative
Calculation rate	4%	0%, 2% og 4%
Tax distortion loss	Included (20%)	Not included
Fuel cost	Based on the Guidelines	Electricity price is not based on the Guidelines
Emissions	Based on the Guidelines	Based on actual data and data from DCE
Emission costs	Based on the Guidelines. CO_2 cost is based on the quota price.	CO ₂ cost is based on a real damage cost.
Job creation effect	Not clarified	Clarified

Results

h

FUEL BALANCE AND CO2 EMISSIONS

Results

SOCIO-ECONOMIC RESULTS

Conclusion

Recommendations

- · No tax distortion loss
- The cost for the damaging effect of CO2 emissions instead of CO2 quotas prices
- · Lower/(no) calculation-rate
- · Concord between business-economic and socio-economic results
- Clarify the consumers wishes
- Illustrate the employment effect
- · Cost-effectiveness analysis

Cost-effectiveness

Cost-benefit analysis: Prices on all advantages and costs

- Calculation rate: Less value to the descendants
 - Brundtland report: Leave the Earth in same condition.

Already a political decision:

Translated:

"How much the world has to reduce emissions of greenhouse gasses is ultimately a political question. [...]

If a climate strategy is based on [...] an upper limit on how much the global temperatures is allowed to rise, a further discussion of using a discount rate will become unnecessary. [...]

When a target for a maximal temperature increase has been set, the remaining climate politic will be reduced to a question on how to reach the target as cheap as possible."

(The Economic Council - Economy and Environment, 2010)

 Cost-effectiveness analysis: how these goals can be achieved most effective!

Thank you for your attention!

