THE SOCIO-ECONOMIC PERSPECTIVE OF CONVERSION OF INDIVIDUAL HEATING TO DISTRICT HEATING

Sustainable Energy Planning and Management
Thesis
June 2016

Line Paulin Pedersen
Agenda

- Purpose of the project
- Methods and theoretical background
- Results
 - Fuel balance
 - CO2 emissions
 - Socio-Economic results
- Recommendations
Purpose of the project

Danish political goals: low emission society by 2050
 • Integration of different energy sectors
 • Heating planning
 • District heating or individual heating?
 • In a Socio-Economic perspective
 • Case: Aabybro
Case: Aabybro
Current production facilities
Scenarios

- Wood chips boiler
- Wood chips boiler and heat pump
- Solar thermal
- Solar thermal, pit storage and heat pump
- Geothermal, absorption heat pump
- Geothermal, elec. heat pump
Methods and theoretical background

- Interviews
- Modelling tool: energyPRO
- Socio-Economic
 - Guidelines by the Danish Energy Agency
 - An institutional economic approach

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Guidelines</th>
<th>Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculation rate</td>
<td>4%</td>
<td>0%, 2% or 4%</td>
</tr>
<tr>
<td>Tax distortion loss</td>
<td>Included (20%)</td>
<td>Not included</td>
</tr>
<tr>
<td>Fuel cost</td>
<td>Based on the Guidelines</td>
<td>Electricity price is not based on the Guidelines</td>
</tr>
<tr>
<td>Emissions</td>
<td>Based on the Guidelines</td>
<td>Based on actual data and data from DUC</td>
</tr>
<tr>
<td>Emission costs</td>
<td>Based on the guidelines, CO2 cost is based on the quota price</td>
<td>CO2 cost is based on a real damage cost</td>
</tr>
<tr>
<td>Job creation effect</td>
<td>Not clarified</td>
<td>Clarified</td>
</tr>
</tbody>
</table>
- Socio-Economic

- Guidelines by the Danish Energy Agency

- An institutional economic approach

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Guidelines</th>
<th>Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculation rate</td>
<td>4%</td>
<td>0%, 2% og 4%</td>
</tr>
<tr>
<td>Tax distortion loss</td>
<td>Included (20%)</td>
<td>Not included</td>
</tr>
<tr>
<td>Fuel cost</td>
<td>Based on the Guidelines</td>
<td>Electricity price is not based on the Guidelines</td>
</tr>
<tr>
<td>Emissions</td>
<td>Based on the Guidelines</td>
<td>Based on actual data and data from DCE</td>
</tr>
<tr>
<td>Emission costs</td>
<td>Based on the Guidelines. CO₂ cost is based on the quota price.</td>
<td>CO₂ cost is based on a real damage cost.</td>
</tr>
<tr>
<td>Job creation effect</td>
<td>Not clarified</td>
<td>Clarified</td>
</tr>
</tbody>
</table>
Results

FUEL BALANCE AND CO2 EMISSIONS

Natural gas consumption [Nm3]

- Reference
- Scenario 3A (wood chips)
- Scenario 3B (wood chips and heat pumps)
- Scenario 2A (solar)
- Scenario 2B (solar, pit storage and heat pumps)
- Scenario 5A (geothermal and heat pumps)
- Scenario 3B (geothermal and heat pumps, elec.)

CO2-emissions (incl. CH4 og N2O)

- Present value, 20 years [t CO2]
- Regular model
- Alternative Socio-Economic Model
- Reference
- Scenario 3A (wood chips)
- Scenario 3B (wood chips and heat pumps)
- Scenario 2A (solar)
- Scenario 2B (solar, pit storage and heat pumps)
- Scenario 5A (geothermal and heat pumps)
- Scenario 3B (geothermal and heat pumps, elec.)
CO2-emissions (incl. CH4 og N2O)

Present value, 20 years [tonnes]

- Reference
- Scenario 1A (wood chips)
- Scenario 1B (wood chips and heatpump)
- Scenario 2A (solar)
- Scenario 2B (solar, pit storage and heatpump)
- Scenario 3A (geothermal and heatpump)
- Scenario 3B (geothermal and heatpump, elec.)
Results

Socio-Economic Results - Regular Model

Socio-Economic Results - Alternative Model
Socio-Economic results - regular model

Present value, 20 years (2016 - M.DKK)

Rate: 4% Rate: 2% Rate: 0%

Reference Scenario 1A Scenario 1B Scenario 2A Scenario 2B Scenario 3A Scenario 3B
Socio-Economic results - alternative model

Present value, 20 years (2016 - M.DKK)

- Rate: 4%
- Rate: 2%
- Rate: 0%

Legend:
- Reference
- Scenario 1A
- Scenario 1B
- Scenario 2A
- Scenario 2B
- Scenario 3A
- Scenario 3B
Conclusion
Recommendations

- No tax distortion loss
- The cost for the damaging effect of CO2 emissions instead of CO2 quotas prices
- Lower/(no) calculation-rate
- Concord between business-economic and socio-economic results
- Clarify the consumers wishes
- Illustrate the employment effect
- Cost-effectiveness analysis.
Cost-effectiveness

Cost-benefit analysis: Prices on all advantages and costs
 - Calculation rate: Less value to the descendants
 - Brundtland report: Leave the Earth in same condition.

Already a political decision:

Translated:
"How much the world has to reduce emissions of greenhouse gasses is ultimately a political question. [...] If a climate strategy is based on [...] an upper limit on how much the global temperatures is allowed to rise, a further discussion of using a discount rate will become unnecessary. [...] When a target for a maximal temperature increase has been set, the remaining climate politic will be reduced to a question on how to reach the target as cheap as possible."
(The Economic Council - Economy and Environment, 2010)

- Cost-effectiveness analysis: how these goals can be achieved most effective!
Thank you for your attention!