Potential contribution of advanced district heating and electric heat pumps to the integration of renewable power generation in Europe

2nd International Conference on Smart Energy Systems and 4th Generation District Heating
Aalborg, 28 September 2016

Dr. Hans Christian Gils
It is not all about rocket science at DLR...
Research focus: VRE based power supply systems

Coverage of deficits
- Adjustable power plants
- Storage discharging
- Power demand reduction
- Electricity import

Utilization of surpluses
- Storage charging
- Usage in other demand sectors
- Power demand increase
- Electricity export
Research questions

• To what extent can a more flexible operation of electric heat pumps (HP) and district heating (DH) contribute to a mostly renewable power supply in Europe?

• Is the deployment of thermal energy storage (TES) competitive with other balancing options?

• How does a more flexible heating interact with other balancing options?
REMIX modelling approach

Input
Climate and weather data, techno-economic technology parameter, scenario data

REMIX Energy System Model

- Energy Data Analysis Tool **REMIX-EnDAT**
 high-resolution RE technology potentials, hourly profiles of demand and RE generation
- Energy System Optimization Model **REMIX-OptiMo**
 Least-cost composition and hourly operation of the power system, determined by linear optimization,
 Minimization of system costs: \(C_{\text{system}} = \sum c_j x_j \)

Output
Hourly system operation, system costs, CO₂ emissions, construction of new assets

- Deterministic linear optimization model realized in GAMS
- Assessment of investment and hourly system dispatch during one year
REMmix case study on power-controlled heat – regions

- Germany-North
- Germany-West
- Germany-Central
- Germany-East
- Germany-Southwest
- Germany-Southeast

- Austria
- BeNeLux
- Denmark West
- Eastern Europe
- France
- Northern Europe
- Switzerland
REMix case study on power-controlled heat – technologies

<table>
<thead>
<tr>
<th>Renewable</th>
<th>Conventional</th>
<th>Public CHP</th>
<th>Industrial CHP</th>
<th>Balancing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass Power</td>
<td>Nuclear Power</td>
<td>Biogas Engine CHP</td>
<td>Biomass-fired Steam Turbine</td>
<td>HVAC power grid</td>
</tr>
<tr>
<td>Geothermal Power</td>
<td>Lignite Power</td>
<td>Natural Gas Engine CHP</td>
<td>Coal-fired Steam Turbine</td>
<td>HVDC transmission lines</td>
</tr>
<tr>
<td>Concentrating Solar Power</td>
<td>Coal Power</td>
<td>Biomass-fired Steam Turbine</td>
<td>Lignite-fired Steam Turbine</td>
<td>Pumped Storage Hydro</td>
</tr>
<tr>
<td>Offshore Wind Power</td>
<td>Gas Turbine</td>
<td>Backpressure CCGT</td>
<td>Natural Gas Engine CHP</td>
<td>Flexible electrolyzers</td>
</tr>
<tr>
<td>Onshore Wind Power</td>
<td></td>
<td>Coal-fired Steam Turbine</td>
<td></td>
<td>Hydrogen storage</td>
</tr>
<tr>
<td>Reservoir Hydro Power</td>
<td></td>
<td>Lignite-fired Steam Turbine</td>
<td></td>
<td>Hydrogen-based transport</td>
</tr>
<tr>
<td>Run-of-river Hydro Power</td>
<td></td>
<td>Waste-fired Steam Turbine</td>
<td></td>
<td>Electric vehicles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biogas Micro-Engine CHP</td>
<td></td>
<td>Electric heat pumps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nat. Gas Micro-Engine CHP</td>
<td></td>
<td>Electric boilers</td>
</tr>
</tbody>
</table>
REMIX case study on power-controlled heat – approach

• Scenario analysis for the year 2050
 ➢ Predefined RE and CHP power plant park (PP) based on scenario studies
 ➢ Power supply: >80% RE, >60% VRE, ~20% CHP, ~9% gas PP w/o CHP
 ➢ Endogenous installation of gas power plants as back-up generation capacity
 ➢ Predefined heating supply structure
 ➢ Res./Com.: 30% DH, 5% building CHP, 21% electric HP, 44% other
 ➢ Industry (ϑ < 500°C): 62% CHP, 4% electric HP, 34% other
• Focus on the analysis of the balancing of VRE fluctuations
 ➢ Comparison of systems with/without power-controlled heat supply
 ➢ Endogenous investment in thermal storage and electric boilers
 ➢ Impact on back-up capacity demand, system operation, costs and emissions
Technical potentials of district heating

- GIS-based assessment of heat demand densities
- Quantification of technical DH potentials in a spatial resolution < 1 km²

More than half of the demand in Europe can be supplied by DH
REMIX case study on power-controlled heat – scenarios

- **Increased fluctuations**
 - **H₂T**
 - Hydrogen usage in the transport sector
 - Production in *flexible electrolysis*
 - **HP**
 - *Increased heat pump* supply shares (38% Res./Com., 8% Ind.)
 - **Base**
 - Base scenario, electricity demand 2100 TWh, VRE capacities: PV 229 GW, wind onshore 219 GW, offshore 115 GW
 - **-EV**
 - *Flexible charging of electric vehicles* (60% of the fleet)
 - **Grid**
 - Endogenous *grid capacity expansion*
 - **-VRE**
 - *Reduced* full load hours of *wind and solar* (-7% / -19%)
 - **CSP**
 - *Import of dispatchable RE electricity* from CSP
 - Reduced wind and PV capacities in Europe

- **Reduced fluctuations**

Import of dispatchable RE electricity from CSP

Reduced wind and PV capacities in Europe
REMix output – investment and usage of TES

- Investment in DH-TES across all scenarios, with capacities of 500-600 GWh
- Exogenously defined: additional 200 GWh in Industry, and 140 (260) GWh in HP systems
- Around 10% of the annual DH heat demand go through the TES
- CSP and load shifting (Electrolyser, EV) reduce TES use
- Additional HP do not affect investment in and usage of DH-TES
REMIX output – regional storage layout

- Relative storage capacity lowest in regions with high hydro power capacity
- Highest capacities in regions with wind power dominated supply

Values shown for scenario Base
REMIX output – investment and usage of electric boilers

- Model endogenous installation of electric boilers in DH systems reaches up to 43 GW (el)
- Significantly lower values only in scenarios with less VRE generation (CSP & -VRE)
- Grid extension, controlled EV charging and CSP imports slightly reduce electric heating
- Increased HP and flexible hydrogen production can balance additional VRE generation
- Low wind power availability has major impact
REMIX output – system benefits

- w/o flexibility: system costs 86-107 bln €, curtailment 11-23 TWh, back-up 96-163 GW

- Maximum reductions achieved:
 - costs 4.1 bln € (4.3%) in scenario Grid
 - curtailment 17 TWh (71%) in scenario Grid
 - back-up 29 GW (18%) in scenario HP (mostly due to flexible HP operation)
Summary, conclusion and discussion

- Model-endogenous investment in TES and electric boilers across all scenarios
- Geographical concentrations to wind power dominated regions
- Least-cost sizing of TES also influenced to CHP technology, fuel and size
- TES notable increases CHP/HP supply share, at the expense of the peak boilers
- Balancing strongly related to generation structure and available technologies
 - Grid extension has positive impact on economics of flexible heating
 - Controlled EV charging and flexible electrolysis can not substitute TES
 - Yearly and hourly wind and solar generation have high influence
- Power-controlled heat supply is an effective measure to increase RE integration
 - TES should be deployed hand-in-hand with VRE power generation
 - Electric heat production from VRE generation peaks has high potential
 - Reductions in curtailment, back-up capacity, costs and CO₂ emissions (~2%)
- Usage on smaller temporal and spatial scales was not assessed
References

Heat Demand and CHP potential

REMix energy system model

Economic potential of flexible HP and CHP in Germany
Contact:

Dr. Hans Christian Gils
German Aerospace Center (DLR)
Institute of Engineering Thermodynamics
Systems Analysis and Technology Assessment Department
Wankelstraße 5 | 70563 Stuttgart | Germany
Phone +49 711 6862-477 | Fax +49 711 6862-8100
hans-christian.gils@dlr.de
www.DLR.de/tt
District heating potential in Europe – Methodology

1) Per-capita demand

2) Relative demand

3) Demand density

3) District heating areas

1. Residential
 - Per-capita demand
 - Relative demand
 - Demand density
 - District heating areas

2. Total demand
 - Per-capita demand
 - Relative demand
 - Demand density
 - District heating areas

3. Commercial
 - Per-capita demand
 - Relative demand
 - Demand density
 - District heating areas

4. Weighting
 - Per-capita demand
 - Relative demand
 - Demand density
 - District heating areas

5. Building type
 - Per-capita demand
 - Relative demand
 - Demand density
 - District heating areas

6. Temperature
 - Per-capita demand
 - Relative demand
 - Demand density
 - District heating areas

7. Population
 - Per-capita demand
 - Relative demand
 - Demand density
 - District heating areas

8. Distribution
 - Per-capita demand
 - Relative demand
 - Demand density
 - District heating areas

9. Land use
 - Per-capita demand
 - Relative demand
 - Demand density
 - District heating areas
District heating potential in Europe – results

- Up to 53% of the considered demand are located in areas with high demand density
- The 24,232 DH areas are distributed very unevenly over Europe
- More than two thirds of them are located in Germany, France, Italy and the UK
- DH supply shares between 22% and 75%
District heating potential in Europe – results

- Application of higher minimum demand density values reduced potential notably
- Then, DH potentials are found only in bigger cities
- Considering significant future demand reductions, there are still potentials