3rd International Conference on Smart Energy Systems and 4th Generation District Heating Copenhagen, 12-13 September 2017

GUIDELINES FOR AN OPTIMAL INTEGRATION OF WATER-WATER HEAT PUMPS IN LOW-TEMPERATURE DHNs

Lessons learnt from the analysis of three networks in France

Nicole Pini^a, Catherine Le Menn^b, Jean-Christophe Léonard^b, Bruno Péchine^a, Guillaume Bardeau^a

a: EIFER, Karlsruhe (DE) b: EDF R&D, Moret-sur-Loing (FR)

OBJECTIVES AND METHODOLOGY

- How to better design, install and operate centralised and decentralised Heat Pumps?
- What economic KPIs need to be considered to design cost-effective installations?

Data from the monitoring system || Business plans, invoices, annual financial reports || Interviews of operators, installers, technicians

	Α	В	С
System architecture	Centralized	Decentralized	Decentralized
Heat pumps	2 x 1092 kW _{th} for heating	18 HPs for heating + 18 HPs for DHW + 1 HP for swimming pool.	13 HPs. In total: 739 kW _{th} for heating + 272 kW _{th} for cooling + 94 kW _{th} for
Back-up	Gas boilers	4640 kW _{th} Gas boilers	DHW Electric resistance
Heat source	Sea water	Geothermal doublet	Rejects from wastewater treatment plant
Number of substations	15	18 + 1 (swimming pool)	5
Temperature (set points)	Forward : 63°C Return: 50 °C	Heating : 36 °C -27/20 °C DWH : 60 °C – 27 °C	Heating : 45 - 26 °C Cooling : 7 °C – 12 °C
HP start-up year	2013	2012-2013	2014

HEAT SOURCE

- The heat source determines the availability and performance of the HP
- The availability and **quality** (flow rate, temperatures, water quality) need to be guaranteed
- **Trained** design **engineers** and further sharing of **return of experience** are needed to avoid project weaknesses and to face the peculiar needs of each heat source type
- Complex installations → time consuming **maintainance**
- Not to be underestimated: length and complexity of the authorisation process

N. Pini. 3rd International Conference on Smart Energy Systems and 4th Generation District Heating, Aalborg, 12-13 September 2017

4DH

Heat Roadmap Europe

re INVEST

HEAT PUMP SELECTION AND SIZING

Heat Pump selection based on: heat demand + source / sink temperatures and their variations during the year:

- Thermal capacity: to be chosen to avoid part-load operations and frequent load variations
- COP: to be calculated for each heat source and sink temperature → good estimation of the HP seasonal performances
- Seasonal COP and HP cover rate often needed to calculate possible incentives
- Spring/autumn: most critical operating conditions, with higher demand fluctuations

4DH

COP: THE IMPACT OF AUXILIARIES

- Significantly higher impact in summer, when the heat production is lower and the HPs work at part-load
- Due to the high impact on the global COP, the consumption of auxiliaries needs to be taken into account in all the project phases

HP SELECTION AND PART-LOAD

Impact of the load rate and return temperature on production temperature:

- Summer: low COP (economic and energy efficiency), but production temperature maintained thanks to the high return temperature (contractual engagement)
- Winter: high COP but, because of the HPs not optimally chosen, the set-point production temperature cannot be reached
- → Analysis in energy AND temperature needed

Set-points: Forward : 63°C Return: 50 °C

ECONOMIC ANALYSIS

Investment cost:

ADH ADH Meat Roadmap Europe Ave-arbon hating and cooling strategy

Operating costs: components of the heat production cost (€/MWh _{heat produced})

CONCLUSIONS

- Carefully select and size the heat pumps according to the yearly temperature and heat demand curves and not based on maximum values
- Do not underestimate:
 - the maintainance needs of the heat source and of the heat pumps and its impact on the overall performances – especially in decentralised systems
 - the electricity consumption of **auxiliaries** required by the heat pump
 - a continuative relationship with the HP provider: several operational issues cannot be detected and resolved at the commissioning
 - the impact of the **network** and the heat source temperatures on the expected performances
 - The importance of Variable Speed Drives and heat storage for the optimization of the HP's operations
- Invest on the monitoring system: good performances of heat pumps rely on an optimised control strategy and on preventive maintainance

THANK YOU

Nicole Pini

<u>nicole.pini@eifer.org</u> +49 (0)721 - 6105 1714

EIFER Emmy-Noether-Straße 11 76131 Karlsruhe Germany www.eifer.org

Source: lifehacker.com

