GUIDELINES FOR AN OPTIMAL INTEGRATION OF WATER-WATER HEAT PUMPS IN LOW-TEMPERATURE DHNs

Lessons learnt from the analysis of three networks in France

Nicole Pini², Catherine Le Menn², Jean-Christophe Léonard², Bruno Péchine¹, Guillaume Bardeau¹

a: EIFER, Karlsruhe (DE)
b: EDF R&D, Moret-sur-Loing (FR)
OBJECTIVES AND METHODOLOGY

- How to better design, install and operate centralised and decentralised Heat Pumps?
- What economic KPIs need to be considered to design cost-effective installations?

Data from the monitoring system || Business plans, invoices, annual financial reports || Interviews of operators, installers, technicians

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>System architecture</td>
<td>Centralized</td>
<td>Decentralized</td>
<td>Decentralized</td>
</tr>
<tr>
<td>Heat pumps</td>
<td>2 x 1092 kW(_h) for heating</td>
<td>18 HPs for heating + 18 HPs for DHW + 1 HP for swimming pool. 4640 kW(_h)</td>
<td>13 HPs. In total: 739 kW(_h) for heating + 272 kW(_h) for cooling + 94 kW(_h) for DHW</td>
</tr>
<tr>
<td>Back-up</td>
<td>Gas boilers</td>
<td>Gas boilers</td>
<td>Electric resistance</td>
</tr>
<tr>
<td>Heat source</td>
<td>Sea water</td>
<td>Geothermal doublet</td>
<td>Rejects from wastewater treatment plant</td>
</tr>
<tr>
<td>Number of substations</td>
<td>15</td>
<td>18 + 1 (swimming pool)</td>
<td>5</td>
</tr>
</tbody>
</table>
| **Temperature (set points)** | Forward: 63°C
Return: 50 °C | Heating: 36 °C -27/20 °C
DWH: 60 °C – 27 °C | Heating: 45 - 26 °C
Cooling: 7 °C – 12 °C |
| **HP start-up year** | 2013 | 2012-2013 | 2014 |
HEAT SOURCE

- The heat source determines the **availability** and performance of the HP
- The availability and **quality** (flow rate, temperatures, water quality) need to be guaranteed
- **Trained** design engineers and further sharing of **return of experience** are needed to avoid project weaknesses and to face the peculiar needs of each heat source type
- Complex installations → time consuming **maintenance**
- Not to be underestimated: length and complexity of the **authorisation** process
HEAT PUMP SELECTION AND SIZING

Heat Pump selection based on: **heat demand + source / sink temperatures** and their **variations** during the year:

- Thermal capacity: to be chosen to avoid part-load operations and frequent load variations
- **COP**: to be calculated for each heat source and sink temperature → good estimation of the HP **seasonal** performances
- Seasonal COP and HP cover rate often needed to calculate possible **incentives**
- Spring/autumn: most critical operating conditions, with higher demand fluctuations

Network A:
- Winter demand: 500-2000 kWh
- Summer demand: 300-450 kWh

N. Pini. 3rd International Conference on Smart Energy Systems and 4th Generation District Heating, Aalborg, 12-13 September 2017
COP: THE IMPACT OF AUXILIARIES

- Significantly higher impact in summer, when the heat production is lower and the HPs work at part-load

- Due to the high impact on the global COP, the consumption of auxiliaries needs to be taken into account in all the project phases

N. Pini. 3rd International Conference on Smart Energy Systems and 4th Generation District Heating, Aalborg, 12-13 September 2017
Impact of the load rate and return temperature on production temperature:

- **Summer**: low COP (**economic** and **energy efficiency**), but production temperature maintained thanks to the high return temperature (**contractual engagement**)
- **Winter**: high COP but, because of the **HPs** not optimally chosen, the set-point production temperature cannot be reached

→ Analysis in energy AND temperature needed

Network A

- **Set-points:**
 - Forward: 63°C
 - Return: 50°C
ECONOMIC ANALYSIS

Investment cost:

Operating costs: components of the heat production cost (€/MWh heat produced)
CONCLUSIONS

• Carefully select and size the heat pumps according to the yearly temperature and heat demand curves and not based on maximum values.

• Do not underestimate:
 – the maintenance needs of the heat source and of the heat pumps and its impact on the overall performances – especially in decentralised systems.
 – the electricity consumption of auxiliaries required by the heat pump.
 – a continuative relationship with the HP provider: several operational issues cannot be detected and resolved at the commissioning.
 – the impact of the network and the heat source temperatures on the expected performances.
 – The importance of Variable Speed Drives and heat storage for the optimization of the HP’s operations.

• Invest on the monitoring system: good performances of heat pumps rely on an optimised control strategy and on preventive maintainance.
THANK YOU

Nicole Pini
nicole.pini@eifer.org
+49 (0)721 - 6105 1714

EIFER
Emmy-Noether-Straße 11
76131 Karlsruhe
Germany
www.eifer.org