3RD INTERNATIONAL CONFERENCE ON
SMART ENERGY SYSTEMS AND
4TH GENERATION DISTRICT HEATING
COPENHAGEN, 12–13 SEPTEMBER 2017
SESSION 27
HEAT ROADMAP EUROPE: HEAT DISTRIBUTION COSTS
KEYNOTE: URBAN PERSSSON
INTRODUCTION

• This work presents the second step in the development of a comprehensive distribution capital cost model for assessing investment costs for district heating systems in a European context.

• The first step, Persson and Werner (2011)*, included:
 – Theoretical reformulation of linear heat density to allow systematic feasibility analyses at new locations.
 – Model application on 1703 Urban Audit city districts in 83 cities (BE, DE, FR, and NL).
 – Identification of a three-fold directly feasible expansion possibility from current levels.

INTRODUCTION

• Have you seen this before?
 – Main result graph from the first step!
 – Three-fold feasible expansion possibility from current levels!

INTRODUCTION

• Overview
 – Some words on the distribution cost model
 – Main findings from the first step
 – Towards hectare resolution
 – Ready for the second step
 – Some words on the spatial demand density model
 – Outputs from the Heat Roadmap Europe project
 – Early results from the second step
 – Conclusions
DISTRIBUTION COST MODEL

• The distribution capital cost model

\[
C_d = \frac{a \cdot \left(\frac{I}{L} \right)}{(Q_s/L)} = \frac{a \cdot (C_1 + C_2 \cdot d_a)}{p \cdot \alpha \cdot q \cdot w}
\]

Heat demand density:

\[
q_L = p \cdot \alpha \cdot q
\]

Plot ratio:

\[
e = p \cdot \alpha = \frac{P}{A_L} \cdot \frac{A_B}{P}
\]

Effective width:

\[
w = \frac{A_L}{L}
\]
DISTRIBUTION COST MODEL

- The distribution capital cost model

\[
C_d = a \cdot \left(\frac{L}{Q_s} \right) = \frac{a \cdot (C_1 + C_2 \cdot d_a)}{p \cdot \alpha \cdot q \cdot w}
\]

Heat demand density:

\[
q_L = p \cdot \alpha \cdot q
\]

Plot ratio:

\[
e = p \cdot \alpha = \frac{P}{A_L} \cdot \frac{A_B}{P}
\]

Effective width:

\[
w = \frac{A_L}{L}
\]
DISTRIBUTION COST MODEL

- Specific investment cost & linear heat density

Independent input data

- Annuity [€/a]
- Construction cost constant [€/m]
- Construction cost coefficient [€/m²]
- Pipe diameter [m]
- Population density [n/km²]
- Specific building space [m²/Capita]
- Specific heat demand [GJ/m²a]
- Effective width [m]

Intermediate input data

- Plot ratio [-]
- Heat demand density [GJ/m²]

Final output data

- Specific investment cost [€/m]
- Linear heat density [GJ/m]
- Distribution capital cost [€/GJ]

Distribution capital cost:

\[C_d = \frac{a \cdot \left(\frac{I}{L} \right)}{(Q_S/L)} = \frac{a \cdot (C_1 + C_2 \cdot d_a)}{p \cdot \alpha \cdot q \cdot w} \]

Heat demand density:

\[q_L = p \cdot \alpha \cdot q \]

Plot ratio:

\[e = p \cdot \alpha = \frac{P}{A_L} \cdot \frac{A_B}{P} \]

Effective width:

\[w = \frac{A_L}{L} \]
DISTRIBUTION COST MODEL

• Specific investment cost

\[
C_d = \frac{a \cdot \left(\frac{I}{L}\right)}{Q_s/L} = \frac{a \cdot (C_1 + C_2 \cdot d_a)}{p \cdot \alpha \cdot q \cdot w}
\]

Heat demand density:

\[q_L = p \cdot \alpha \cdot q\]

Plot ratio:

\[e = p \cdot \alpha = \frac{P}{A_L} \cdot \frac{A_B}{P}\]

Effective width:

\[w = \frac{A_L}{L}\]
DISTRIBUTION COST MODEL

• Specific investment cost

\[
\begin{align*}
A &= 2022,3x + 286,15 \\
B &= 1725x + 213,83 \\
C &= 1378x + 151,22
\end{align*}
\]

- A - Inner City
- B - Suburbs
- C - Rural areas

Distribution capital cost:

\[
C_d = \frac{a \cdot \left(\frac{l}{I}\right)}{(Q_s/L)} = \frac{a \cdot (C_1 + C_2 \cdot d_a)}{p \cdot \alpha \cdot q \cdot w}
\]

Heat demand density:

\[
q_L = p \cdot \alpha \cdot q
\]

Plot ratio:

\[
e = p \cdot \alpha = \frac{P}{A_L} \cdot \frac{A_B}{P}
\]

Effective width:

\[
w = \frac{A_L}{L}
\]
DISTRIBUTION COST MODEL

• Linear heat density

\[
D_0 = \lambda \cdot \frac{I}{Q_S} = \lambda \cdot (C_1 + C_2 \cdot d_a) / (Q_S/L)
\]

Heat demand density:
\[
q_L = p \cdot \alpha \cdot q
\]

Plot ratio:
\[
e = p \cdot \alpha = \frac{P}{A_L} \cdot \frac{A_B}{P}
\]

Effective width:
\[
w = \frac{A_L}{L}
\]
DISTRIBUTION COST MODEL

- Plot ratio

Distribution capital cost:
\[C_d = a \cdot \left(\frac{I}{L} \right) = a \cdot \left(\frac{C_1 + C_2 \cdot d_a}{Q_s/L} \right) \]

Heat demand density:
\[q_L = p \cdot \alpha \cdot q \]

Plot ratio:
\[e = p \cdot \alpha = \frac{P}{A_L} \cdot \frac{A_B}{P} \]

Effective width:
\[w = \frac{A_L}{L} \]
DISTRIBUTION COST MODEL

• Plot ratio

<table>
<thead>
<tr>
<th>Area characteristics</th>
<th>Plot Ratio (e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner city areas (A)</td>
<td>$e \geq 0.5$</td>
</tr>
<tr>
<td>Outer city areas (B)</td>
<td>$0.3 \leq e < 0.5$</td>
</tr>
<tr>
<td>Park areas (C)</td>
<td>$0 \leq e < 0.3$</td>
</tr>
</tbody>
</table>

Distribution capital cost:

$$C_d = \frac{a \cdot \left(\frac{I}{L}\right)}{(Q_s/L)} = \frac{a \cdot (C_1 + C_2 \cdot d_a)}{p \cdot \alpha \cdot q \cdot w}$$

Heat demand density:

$$q_L = p \cdot \alpha \cdot q$$

Plot ratio:

$$e = p \cdot \alpha = \frac{P}{A_L} \cdot \frac{A_B}{P}$$

Effective width:

$$w = \frac{A_L}{L}$$

3rd international conference on SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

www.4dh.eu www.reinvestproject.eu www.heatroadmap.eu
DISTRIBUTION COST MODEL

- Heat demand density

\[
q_L = p \cdot \alpha \cdot q
\]

Distribution capital cost:

\[
C_d = a \cdot \frac{I}{(Q_s/L)} = a \cdot (C_1 + C_2 \cdot d_a) \cdot p \cdot \alpha \cdot q \cdot w
\]

Plot ratio:

\[
e = p \cdot \alpha = \frac{P}{A_L} \cdot \frac{A_B}{P}
\]

Effective width:

\[
w = \frac{A_L}{L}
\]
DISTRIBUTION COST MODEL

• Effective width

Distribution capital cost:

\[C_d = \frac{a \cdot \left(\frac{I}{L} \right)}{(Q_s/L)} = \frac{a \cdot (C_1 + C_2 \cdot d_a)}{p \cdot \alpha \cdot q \cdot w} \]

Heat demand density:

\[q_L = p \cdot \alpha \cdot q \]

Plot ratio:

\[e = p \cdot \alpha = \frac{P}{A_L} \cdot \frac{A_B}{P} \]

Effective width:

\[w = \frac{A_L}{L} \]
DISTRIBUTION COST MODEL

• Effective width

Distribution capital cost:

\[C_d = \frac{a \cdot (\frac{I}{L})}{(Q_s/L)} = \frac{a \cdot (C_1 + C_2 \cdot d_a)}{p \cdot \alpha \cdot q \cdot w} \]

Heat demand density:

\[q_L = p \cdot \alpha \cdot q \]

Plot ratio:

\[e = p \cdot \alpha = \frac{P}{A_L} \cdot \frac{A_B}{P} \]

Effective width:

\[w = \frac{A_L}{L} \]
The distribution capital cost model

Distribution capital cost:

\[C_d = \frac{a \cdot (I)}{(Q_S/L)} = \frac{a \cdot (C_1 + C_2 \cdot d_a)}{p \cdot \alpha \cdot q \cdot w} \]

Heat demand density:

\[q_L = p \cdot \alpha \cdot q \]

Plot ratio:

\[e = p \cdot \alpha = \frac{P}{A_L} \cdot \frac{A_B}{P} \]

Effective width:

\[w = \frac{A_L}{L} \]
THE FIRST STEP

- **Urban Audit dataset:**
 - 83 cities, 1703 city districts
 - France, Belgium, Germany and the Netherlands
 - Population coverage; ~21% (~35 million out of ~170 million)

THE FIRST STEP

• Three-fold directly feasible expansion from current levels
• Indicative plot ratio threshold: 0.15 – 0.20
• Corresponding heat density: 90 TJ/km² (~25 GWh/km²)
TOWARDS HECTARE RESOLUTION

• Considerations:
 – The Urban Audit city districts were of random sizes!
 – Using a uniform and homogenous spatial unit for land area
 – A raster grid would be better!
 – Square kilometre resolution?
TOWARDS HECTARE RESOLUTION

- Considerations:
 - In 2013, heat demand density by square kilometre raster grid cell resolution
 - Case study of the Finnish capital Helsinki and surrounding cities
 - But, still too coarse not to miss out on DHC opportunities!
TOWARDS HECTARE RESOLUTION

• Considerations:
 – DHC opportunities may very well exist below the square kilometre resolution
 – Size and concentration of settlements
 – Spatial coherency and contiguous areas

Figure 1. Low plot ratio land areas, scenario A with wide dispersion of buildings and scenario B with high concentration of buildings.
TOWARDS HECTARE RESOLUTION

• Considerations:
 – DHC opportunities may very well exist below the square kilometre resolution
 – Size and concentration of settlements
 – Spatial coherency and contiguous areas
 – Hectare resolution, but is it available?

Figure 1. Low plot ratio land areas, scenario A with wide dispersion of buildings and scenario B with high concentration of buildings.
TOWARDS HECTARE RESOLUTION

• No, not in 2011:
 – Demand for meta planning of district heating in Europe
 • Identify areas with feasible distribution conditions to promote expansion and benefit from higher energy efficiency, lower carbon dioxide emissions etc.
 – Demand for high resolution pop. grid data in Europe
 • Issue of low resolution in official population density grids (square kilometres, minimum resolution 25 ha)
 • Data on square kilometre resolution disaggregated to hectares not sufficient...
 • Feasible distribution conditions prevailing in sub-square kilometre areas remain hidden...
 – How to model heat demand densities below the square kilometre level in a justified manner?

3rd international conference on SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING
Copenhagen, 12-13 September 2017
www.4dh.eu www.reinvestproject.eu www.heatroadmap.eu
THE SECOND STEP

The Heat Roadmap Europe project

- Fourth Heat Roadmap Europe project (HRE4)
- Funded through the Horizon 2020 program (2016 – ongoing)
- WP2: GIS mapping of heating and cooling markets
- Study focus: 14 EU28 MS with the largest heat demands
- Austria, Belgium, Czech Republic, Finland, France, Germany, Hungary, Italy, Netherlands, Poland, Romania, Spain, Sweden, and United Kingdom.
THE SECOND STEP

• Research questions:
 – How to construct a spatial demand density model representing the distribution of residential and service sector building heat demands by hectare resolution?
 – What is the current per hectare spatial distribution of building heat demands in EU28 Member States?
 – What are the current distribution capital cost levels per hectare in EU28 Member States?
 – What are possible and competitive national and urban heat market shares for district heating in EU28 Member States with respect to general conditions and area characteristics?
SPATIAL DEMAND DENSITY MODEL

• Modelling conditions:
 – Zooming in from square kilometre to the hectare level increases the demand for computational capacity
 • Gross land area of EU27: \(~4.4 \text{ Mkm}^2, \sim440 \text{ Mha}\)
 • Gross land area of HRE4 14 MS: \(~3.7 \text{ Mkm}^2, \sim370 \text{ Mha} \,(84\%)\)

<table>
<thead>
<tr>
<th>MS</th>
<th>A_{Land} [Mkm2]</th>
<th>A_{Land} [Mha]</th>
<th>$A_{\text{Land,ql}}$ [Mha]</th>
<th>Share [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>0.08</td>
<td>8.39</td>
<td>0.91</td>
<td>11%</td>
</tr>
<tr>
<td>BE</td>
<td>0.03</td>
<td>3.05</td>
<td>0.69</td>
<td>22%</td>
</tr>
<tr>
<td>CZ</td>
<td>0.08</td>
<td>7.89</td>
<td>0.86</td>
<td>11%</td>
</tr>
<tr>
<td>DE</td>
<td>0.36</td>
<td>35.74</td>
<td>5.77</td>
<td>16%</td>
</tr>
<tr>
<td>ES</td>
<td>0.51</td>
<td>50.59</td>
<td>1.55</td>
<td>3%</td>
</tr>
<tr>
<td>FI</td>
<td>0.34</td>
<td>33.84</td>
<td>0.83</td>
<td>2%</td>
</tr>
<tr>
<td>FR</td>
<td>0.63</td>
<td>63.32</td>
<td>7.95</td>
<td>13%</td>
</tr>
<tr>
<td>HU</td>
<td>0.09</td>
<td>9.30</td>
<td>0.77</td>
<td>8%</td>
</tr>
<tr>
<td>IT</td>
<td>0.30</td>
<td>30.21</td>
<td>3.96</td>
<td>13%</td>
</tr>
<tr>
<td>NL</td>
<td>0.04</td>
<td>4.15</td>
<td>1.09</td>
<td>26%</td>
</tr>
<tr>
<td>PL</td>
<td>0.31</td>
<td>31.27</td>
<td>3.68</td>
<td>12%</td>
</tr>
<tr>
<td>RO</td>
<td>0.24</td>
<td>23.84</td>
<td>1.61</td>
<td>7%</td>
</tr>
<tr>
<td>SE</td>
<td>0.44</td>
<td>43.86</td>
<td>1.36</td>
<td>3%</td>
</tr>
<tr>
<td>UK</td>
<td>0.25</td>
<td>24.85</td>
<td>2.77</td>
<td>11%</td>
</tr>
<tr>
<td>HRE4</td>
<td>3.70</td>
<td>370.30</td>
<td>33.79</td>
<td>9%</td>
</tr>
</tbody>
</table>
Input data:

- From the FORECAST model (HRE4 WP3 partners)
- By settlement type, prepared as specific demands
- Adjustments for local climate and population density

<table>
<thead>
<tr>
<th>Country</th>
<th>P [Mn]</th>
<th>Q_{tot} [TWh/a]</th>
<th>Q_{res} [TWh/a]</th>
<th>$Q_{\text{res,SFH}}$ [TWh/a]</th>
<th>$Q_{\text{res,MFH}}$ [TWh/a]</th>
<th>Q_{ser} [TWh/a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>8.6</td>
<td>64.5</td>
<td>44.2</td>
<td>32.2</td>
<td>12.0</td>
<td>20.4</td>
</tr>
<tr>
<td>BE</td>
<td>11.3</td>
<td>90.1</td>
<td>62.0</td>
<td>48.1</td>
<td>13.9</td>
<td>28.1</td>
</tr>
<tr>
<td>CZ</td>
<td>10.5</td>
<td>65.9</td>
<td>47.3</td>
<td>27.1</td>
<td>20.2</td>
<td>18.6</td>
</tr>
<tr>
<td>DE</td>
<td>81.2</td>
<td>670.4</td>
<td>443.8</td>
<td>284.5</td>
<td>159.3</td>
<td>226.6</td>
</tr>
<tr>
<td>ES</td>
<td>46.4</td>
<td>130.8</td>
<td>92.5</td>
<td>35.1</td>
<td>57.4</td>
<td>38.2</td>
</tr>
<tr>
<td>FI</td>
<td>5.5</td>
<td>62.9</td>
<td>43.2</td>
<td>32.0</td>
<td>11.2</td>
<td>19.7</td>
</tr>
<tr>
<td>FR</td>
<td>66.4</td>
<td>420.6</td>
<td>306.5</td>
<td>231.3</td>
<td>75.2</td>
<td>114.1</td>
</tr>
<tr>
<td>HU</td>
<td>9.9</td>
<td>58.3</td>
<td>40.4</td>
<td>39.1</td>
<td>1.3</td>
<td>17.9</td>
</tr>
<tr>
<td>IT</td>
<td>60.8</td>
<td>354.7</td>
<td>270.4</td>
<td>177.1</td>
<td>84.3</td>
<td></td>
</tr>
<tr>
<td>NL</td>
<td>16.9</td>
<td>118.1</td>
<td>80.0</td>
<td>65.3</td>
<td>14.6</td>
<td>38.2</td>
</tr>
<tr>
<td>PL</td>
<td>38.0</td>
<td>182.7</td>
<td>138.6</td>
<td>89.9</td>
<td>48.7</td>
<td>44.1</td>
</tr>
<tr>
<td>RO</td>
<td>19.9</td>
<td>50.8</td>
<td>38.5</td>
<td>26.6</td>
<td>11.9</td>
<td>12.3</td>
</tr>
<tr>
<td>SE</td>
<td>9.7</td>
<td>82.3</td>
<td>54.4</td>
<td>32.0</td>
<td>22.3</td>
<td>27.9</td>
</tr>
<tr>
<td>UK</td>
<td>64.9</td>
<td>377.8</td>
<td>280.2</td>
<td>261.6</td>
<td>18.7</td>
<td>97.6</td>
</tr>
<tr>
<td>HRE4</td>
<td>450.0</td>
<td>2730.0</td>
<td>1942.0</td>
<td>1298.3</td>
<td>643.7</td>
<td>788.0</td>
</tr>
</tbody>
</table>

Input data:

- From the FORECAST model (HRE4 WP3 partners)
- By settlement type, prepared as specific demands
- Adjustments for local climate and population density

<table>
<thead>
<tr>
<th>Country</th>
<th>q_{hot} [GJ/na]</th>
<th>q_{res} [GJ/na]</th>
<th>q_{ser} [GJ/na]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>27.1</td>
<td>18.5</td>
<td>8.6</td>
</tr>
<tr>
<td>BE</td>
<td>28.8</td>
<td>19.8</td>
<td>9.0</td>
</tr>
<tr>
<td>CZ</td>
<td>22.5</td>
<td>16.2</td>
<td>6.3</td>
</tr>
<tr>
<td>DE</td>
<td>29.7</td>
<td>19.7</td>
<td>10.0</td>
</tr>
<tr>
<td>ES</td>
<td>10.1</td>
<td>7.2</td>
<td>3.0</td>
</tr>
<tr>
<td>FI</td>
<td>41.4</td>
<td>28.4</td>
<td>12.9</td>
</tr>
<tr>
<td>FR</td>
<td>22.8</td>
<td>16.6</td>
<td>6.2</td>
</tr>
<tr>
<td>HU</td>
<td>21.3</td>
<td>14.8</td>
<td>6.5</td>
</tr>
<tr>
<td>IT</td>
<td>21.0</td>
<td>16.0</td>
<td>5.0</td>
</tr>
<tr>
<td>NL</td>
<td>25.2</td>
<td>17.0</td>
<td>8.1</td>
</tr>
<tr>
<td>PL</td>
<td>17.3</td>
<td>13.1</td>
<td>4.2</td>
</tr>
<tr>
<td>RO</td>
<td>9.2</td>
<td>7.0</td>
<td>2.2</td>
</tr>
<tr>
<td>SE</td>
<td>30.4</td>
<td>20.1</td>
<td>10.3</td>
</tr>
<tr>
<td>UK</td>
<td>21.0</td>
<td>15.5</td>
<td>5.4</td>
</tr>
<tr>
<td>HRE4</td>
<td>21.8</td>
<td>15.5</td>
<td>6.3</td>
</tr>
</tbody>
</table>

SPATIAL DEMAND DENSITY MODEL

- Geo-statistical modelling of the built environment
 - In absence of actual demand density data at hectare level, geographical distributions modelled using other available spatial data which correlate with thermal demands
 - Exploratory multilinear regression models: Pop. density at hectare level (the GHS Layer), built-up areas, land use, GDP etc.
 - Floor areas estimated for different types of buildings and settlements

SESSION 27
HEAT ROADMAP EUROPE: HEAT DISTRIBUTION COSTS
KEYNOTE: URBAN PERSSON

OUTPUTS
• Outputs:
 – Budapest
 – Construction cost values updated to represent average 2015 cost levels
• Outputs:
 – **Stockholm**
 – The plot ratio value of each hectare grid cell used to determine the corresponding effective width value, according to:

 \[
 0 < e \leq 0.4; w = 137.5 \cdot e + 5, e > 0.4; w = 60 \quad [m]
 \]
• Outputs:

 – **Manchester**

 – 84% of all building heat demands in the UK are located in areas with heat demand densities above 50 TJ/km², but only 3% in areas above 300 TJ/km²
Outputs:
- Brussels
- 70% of all building heat demands in BE are located in areas with heat demand densities above 50 TJ/km², and 10% in areas above 300 TJ/km²
EARLY RESULTS

• Distribution of building heat demands
 – ~1/3 of the total HRE4 heat demand volume (32%), originate in lower demand density areas (rural and semi-suburban areas)
 – The exact same share (32%) is found among high density areas (e.g. urban centres and inner city areas)

<table>
<thead>
<tr>
<th>MS</th>
<th>Q_{tot} [PJ/a]</th>
<th><20 TJ/km² [%]</th>
<th>20-50 TJ/km² [%]</th>
<th>50-120 TJ/km² [%]</th>
<th>120-300 TJ/km² [%]</th>
<th>>300 TJ/km² [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>228</td>
<td>18</td>
<td>24</td>
<td>31</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>BE</td>
<td>320</td>
<td>10</td>
<td>20</td>
<td>47</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>CZ</td>
<td>234</td>
<td>15</td>
<td>26</td>
<td>27</td>
<td>20</td>
<td>11</td>
</tr>
<tr>
<td>DE</td>
<td>238</td>
<td>11</td>
<td>12</td>
<td>39</td>
<td>26</td>
<td>11</td>
</tr>
<tr>
<td>ES</td>
<td>453</td>
<td>16</td>
<td>16</td>
<td>20</td>
<td>26</td>
<td>23</td>
</tr>
<tr>
<td>FI</td>
<td>221</td>
<td>28</td>
<td>18</td>
<td>32</td>
<td>17</td>
<td>5</td>
</tr>
<tr>
<td>FR</td>
<td>1487</td>
<td>18</td>
<td>27</td>
<td>31</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>HU</td>
<td>208</td>
<td>13</td>
<td>55</td>
<td>20</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>IT</td>
<td>1257</td>
<td>13</td>
<td>12</td>
<td>25</td>
<td>32</td>
<td>17</td>
</tr>
<tr>
<td>NL</td>
<td>417</td>
<td>10</td>
<td>8</td>
<td>39</td>
<td>33</td>
<td>9</td>
</tr>
<tr>
<td>PL</td>
<td>648</td>
<td>20</td>
<td>34</td>
<td>22</td>
<td>17</td>
<td>7</td>
</tr>
<tr>
<td>RO</td>
<td>181</td>
<td>51</td>
<td>22</td>
<td>13</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>SE</td>
<td>290</td>
<td>24</td>
<td>20</td>
<td>29</td>
<td>17</td>
<td>10</td>
</tr>
<tr>
<td>UK</td>
<td>1334</td>
<td>7</td>
<td>9</td>
<td>56</td>
<td>26</td>
<td>3</td>
</tr>
<tr>
<td>HRE4</td>
<td>9658</td>
<td>14</td>
<td>18</td>
<td>35</td>
<td>22</td>
<td>10</td>
</tr>
</tbody>
</table>
EARLY RESULTS

• Current distribution capital cost levels per hectare
 – Cumulative cost curves indicating shares of total national heat markets at different distribution capital cost levels

EARLY RESULTS

• Current distribution capital cost levels per hectare
 – Cumulative cost curves indicating shares of total national heat markets at different distribution capital cost levels
EARLY RESULTS

• National and urban heat market shares for district heating
 – ~30% district heating heat market shares at marginal cost levels of 3.1 €/GJ
 – ~32% of total heat demands at heat demand densities above 120 TJ/km²
 – Directly feasible European district heating sector of approximately 3.1 EJ/a

Table: Heat Market Shares for Various Density Levels in Different Countries

<table>
<thead>
<tr>
<th>Country</th>
<th>Density (TJ/km²)</th>
<th>Share [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>228</td>
<td>18</td>
</tr>
<tr>
<td>BE</td>
<td>320</td>
<td>10</td>
</tr>
<tr>
<td>CZ</td>
<td>234</td>
<td>15</td>
</tr>
<tr>
<td>DE</td>
<td>2380</td>
<td>11</td>
</tr>
<tr>
<td>ES</td>
<td>453</td>
<td>16</td>
</tr>
<tr>
<td>FI</td>
<td>221</td>
<td>28</td>
</tr>
<tr>
<td>FR</td>
<td>1487</td>
<td>18</td>
</tr>
<tr>
<td>HU</td>
<td>208</td>
<td>13</td>
</tr>
<tr>
<td>IT</td>
<td>1257</td>
<td>13</td>
</tr>
<tr>
<td>NL</td>
<td>417</td>
<td>10</td>
</tr>
<tr>
<td>PL</td>
<td>648</td>
<td>20</td>
</tr>
<tr>
<td>RO</td>
<td>181</td>
<td>51</td>
</tr>
<tr>
<td>SE</td>
<td>290</td>
<td>24</td>
</tr>
<tr>
<td>UK</td>
<td>1334</td>
<td>7</td>
</tr>
<tr>
<td>HRE4</td>
<td>9658</td>
<td>14</td>
</tr>
</tbody>
</table>

CONCLUSIONS

To conclude...

- Heat demand density and distribution capital costs have successfully been established on the hectare grid cell level!
 - This in itself is a major, unprecedented research achievement that will be further elaborated in coming conference and journal papers
- By comparison to gross land areas, only 9% constitute areas with recorded heat demands at current conditions
- Marginal distribution capital costs as low as below 1 €/GJ are rare but present in the study results
- ~30% district heating heat market shares at marginal cost levels of 3.1 €/GJ – Indicative! Normative?

- WHAT IS THE VALUE OF RECOVERED EXCESS HEAT?
SESSION 27

THANK YOU!

QUESTIONS?
• Outputs:
 – Marginal cold distribution capital costs by hectare level:
 – Barcelona