

Barriers for transition to 4th generation district heating in existing large networks

Dr.sc.ing. Anna Volkova, PhD st. Vladislav Mašatin
Tallinn University of Technology
Institute of Energy Technology

Goal and tasks of research

The goal of research was to identify the most important barriers for large DH system transition to 4th generation DH

- 1. Improve the methodology for the evaluation of DHS transition process to 4th generation district heating:
 - Analysis of DHS transition process in time
 - Define the most important key performance indicators by it impact on transition process and indicator achievement rate
- 2. Large DH system case study (Tallinn district heating system)
- Analyse the obstacles for large DH system transition to 4th generation and solutions.

4th generation district heating concept

- supply low-temperature DH for space heating and domestic hot water to buildings
- distribute heat in networks with low heat losses;
- enlarge the share of renewable non-fuel heat sources and recycle heat from low-temperature sources;
- become an integrated part of smart energy systems;
- ensure sustainable planning, cost and motivation structures

Key performance indicators

- supply and return DH annual average temperature, °C, t_s , t_r
- weighted average pipe diameter, m, D_a
- network effective average heat transmission coefficient, W/m²K, K
- the share of consumers covered by intelligent metering, %
- annual total non-fuel renewable energy for heat generation, MWh, $E_{nf.th}$
- heat produced by CHP, MWh, Q_{thCHP}
- share of short-term TES from CHP heat capacity, %

DH transition evaluation criteria 4DH

C₁ Fuel based primary energy per delivered heat energy, MWh/MWh

$$C_{1} = \frac{\sum B_{f.h.} \cdot H_{f} + \frac{\sum B_{f.CHP} \cdot Q_{th_{CHP}}}{Q_{e_{CHP}} + Q_{th_{CHP}}} \cdot H_{f} - E_{nf.th}}{Q_{p} - K \cdot \pi \cdot D_{a} \cdot 2L \cdot \left(\frac{1}{2}(t_{s} + t_{r}) - t_{amb}\right) \cdot 8760}$$

C₂ CO₂ emissions per delivered heat energy, kgCO₂/MWh

$$C_{2} = \frac{\sum E_{f.h.} \cdot \gamma_{f} + \sum E_{f.CHP} \cdot \gamma_{f} - \sum E_{f.CHP.e} \cdot \gamma_{nat}}{Q_{fp} + E_{nf.th} - K \cdot \pi \cdot D_{a} \cdot 2L \cdot \left(\frac{1}{2}(t_{s} + t_{r}) - t_{amb}\right) \cdot 8760}$$

 $3^{\rm rd}$ international conference on SMART ENERGY SYSTEMS AND $4^{\rm TH}$ GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

DH transition criteria

4DH

DENMARK

KPI achievement rate evaluation

Tallinn district heating system

Production	Biomass, CHP	28% (2017: 35%)
	Waste inceneration, CHP	15% (2017: 15%)
	Natural gas	57% (2017: 50%)
	Total	1970 GWh
Consumers	3911 buildings	
Consumption	1685 GWh	
	Length	438 km
Network	Pre-insulated	38%
	Heat losses	14,5%
	で	7

3rd international conference on SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

www.4dh.eu

www.reinvestproject.eu

www.heatroadmap.eu

Key performance indicators achievement rate

Key performance indicators affect on C₁ and C₂

3rd international conference on SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

Tallinn DHS transition process

 $3^{\rm rd}$ international conference on SMART ENERGY SYSTEMS AND $4^{\rm TH}$ GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

Main barriers for large DH

 $3^{\rm rd}$ international conference on SMART ENERGY SYSTEMS AND $4^{\rm TH}$ GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

www.4dh.eu

www.reinvestproject.eu

www.heatroadmap.eu

Renewable and surplus energy recycling

- Location problems:
 - Surplus energy absence
 - Geothermal/wind/solar energy depends on location and might be limited
- No technical problems
- Consumption problems (in next slides)

Low heat losses

 $3^{\rm rd}$ international conference on SMART ENERGY SYSTEMS AND $4^{\rm TH}$ GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

Low heat losses

- Production side losses can be under control
- Pipe change from heat loss reduction point might be economically unreasonable
- It is hard to change insulation in whole large DH in short time
- Solution: careful and long term planning of network

Low supply temperature

Very welcome from production and network side

Problem for existing consumers, design schedule

90/70°C is common

 Underfloor heating is buildings

Solution: benefits an

3rd international conference on Copenhagen, 12-13 September 2017

Low return temperature

- Even more welcome from production and distribution side
- Problem for existing consumers:
 - Heating devices with low ∆T in use
 - DHW circulation at 45-50°C

Solution: benefits and motivation, multi component tariffs

Smart control and metering

- No technical problems today:
 - Devices available
 - Internet connection is inexpensive
 - GSM technology is fast and secure

Trust between company and consumer

System integration with DC and electricity grids

 3^{rd} international conference on SMART ENERGY SYSTEMS AND 4^{TH} GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

www.heatroadmap.eu

Conclusions

Methodology:

- Allow to evaluate network progress towards to 4GDHN
- Find most important indicators

Barriers in large DHN:

- Energy might be unavailable
- Consumer heating devices
- Large scale
- Trust and legislation

Contacts

<u>anna.volkova@ttu.ee</u> vladislav.masatin@utilitas.ee

Acknowledgements:

 3^{rd} international conference on SMART ENERGY SYSTEMS AND 4^{TH} GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017