Forecasting of heat demand in district heating systems and their integration into smart grid controllers – Fractals, ensembles and expert advisers

COPENHAGEN, 13 SEPTEMBER 2017
Davy Geysen – Gowri Suryanarayana
Overview

Part I The context: STORM
Part II Machine learning
Part III Expert Advice
Part IV Results
Part V Conclusions
Self-organising Thermal Operational Resource Management

• 4th generation DHC

• Generic intelligent DHC network controller
 – Thermal load forecasting

• Karlshamn DHS
 – 100 buildings
Overview

Part I The context: STORM
Part II Machine learning
Part III Expert Advice
Part IV Results
Part V Conclusions
Machine learning

- Building a model from sample inputs

![Heat load Karlskrona graph]

3rd international conference on
SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING
Copenhagen, 12-13 September 2017

www.4dh.eu www.reinvestproject.eu www.heatroadmap.eu
Supervised Machine learning

- Input vector (features) to output value (target)
 - Multiple linear regression (LR)
 - Decision Tree Learning¹
 - Extremely-Randomized Trees (ETR)
 - Artificial Neural Network (ANN)

Feature selection

- Temperature forecast and historic thermal load
Feature selection

- Timing information

![Average thermal load (a)](image)

3rd international conference on
SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING
Copenhagen, 12-13 September 2017

www.4dh.eu www.reinvestproject.eu www.heatroadmap.eu
Feature selection

• Temperature forecast + lags
 – Quadratic and cubic dependence on the above temp features

• Thermal load + lags
 – Quadratic and cubic dependence on the above thermal load features

• Timing information
 – Day of the year, day of the week, hour of the day
Overview

Part I The context: STORM
Part II Machine learning
Part III Expert Advice
Part IV Results
Part V Conclusions
Expert advice

• Combine N thermal load forecasting experts
 – Multiple linear regression, ExtRa Trees regressor, Artificial Neural Network

• Track the best expert
 – Losses and regret
 – Minimize \(R_k = \hat{L}_k - \min_{1 \leq i \leq N} L_{i,k} \)

• Fixed-share forecaster (FS)\(^2\)

Algorithm 1 Prediction of thermal load with expert advice

1: Parameters: decision space $\mathbb{R}_{\geq 0}$, outcome space $\mathbb{R}_{\geq 0}$, loss function ℓ, set ε of expert indices
2: for $k = 1, 2, \ldots$ do
3: prediction of experts $\{F_{E,k} : E \in \varepsilon\}$, expert advice;
4: reveal expert advice to forecaster;
5: prediction of forecaster based on expert advice \hat{P}_k
6: calculate forecaster’s loss $\ell(\hat{P}_k, Y_k)$ and the expert losses $\ell(F_{E,k}, Y_k)$
Overview

Part I The context: STORM
Part II Machine learning
Part III Expert Advice
Part IV Results
Part V Conclusions
Results Expert Advice

Real thermal load versus forecasted thermal load

3rd international conference on
SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING
Copenhagen, 12-13 September 2017

www.4dh.eu www.reinvestproject.eu www.heatroadmap.eu
Results Expert Advice

Expert weights (a)

- LR
- ETR-lags
- ETR
- ANN

Time

Weight

2016-11-02 to 2017-02-22

3rd international conference on
SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING
Copenhagen, 12-13 September 2017

www.4dh.eu www.reinvestproject.eu www.heatroadmap.eu
Results Expert Advice

MAPEs (b)

Time

MAPE [%]

8.5 - 8.0 - 7.5 - 7.0 - 6.5 - 6.0 - 5.5 - 5.0 -

LR ETR-lags ETR ANN Forecaster

3rd international conference on
SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING
Copenhagen, 12-13 September 2017

www.4dh.eu www.reinvestproject.eu www.heatroadmap.eu
Overview

Part I The context: STORM
Part II Machine learning
Part III Expert Advice
Part IV Results
Part V Conclusions
Conclusions

- **Robust and generic thermal load forecaster**
 - Easy to add and remove experts
 - Reduces susceptibility to changes in the DHS
 - Sufficient training data needed
 - Python 3.5, scikit-learn

- **Outperforms fractals**

- **Integration of forecaster in smart controller**
 - Shift peak production to integrate more renewables
Forecasting of heat demand in district heating systems and their integration into smart grid controllers – Fractals, ensembles and expert advisers

COPENHAGEN, 13 SEPTEMBER 2017
Davy Geysen – Gowri Suryanarayana