2nd International Conference on Smart Energy Systems and 4th Generation District Heating Aalborg, 27-28 September 2016

From HT-DHS to MT-DHS using MPC

Sam van der Zwan, Ivo Pothof (Deltares), Renske Kind, Paul Stoelinga, Roman Aalbers (Deerns), Chris Hellinga (Delft Uni Technology)

Ivo.Pothof@deltares.nl

AALBORG UNIVERSITY DENMARK

ŤU Delft

- 101 HEX
- Heat demand ~ 125.000 GJ

The challenge

- Transform conventional DHS (120 80°C) to novel MT DHS (dyn. °C)
- Consortium
 - Deerns building physics, LEA
 - Deltares DH-network + control
 - Kuijpers installation contractor
 - Priva Hardware supplier

Kuijpers

Deltares

- Independent institute for applied research in the field of water, subsurface and infrastructure
- Motto: Enabling Delta Life, dare-to-share
- 800 employees, 28 nationalities
- 110 M€
- Expertise in this project
 - Hydraulics and control DH network, WANDA
 - RTC-Tools

RTC-Tools

- Toolbox for Model-predictive control
- Designed for real-time applications
 - Robust, fast algorithms
- Open software

- Application (examples)
 - BPA (USA) 22 GW Hydropower production optimisation
 - CEMIG (Br) 30 GW hydropower optimisation + flood control
 - Waterboard NL: Optimal operation WWTP Garmerwolde
 - Waterboard NL: Optimal operation polder pumping stations

WANDA

- Validated simulation platform for pipe hydraulics and control
- Design, commissioning, real-time performance monitoring
- Used as real-time verification

AALBORG UNIVERSITY Denmark

Design approach

占古

Design scenarios

- 1. Current situation: HT firing curve DH. Reference for comfort.
- 2. MT firing curve DH. No optimisation ; comfort < reference.
- 3. MT firing curve DH. Optimisation to meet comfort by raising temperature.
- 4. MT firing curve DH. Optimisation to meet comfort by extending startup period (pre-heating) and if necessary, raising temperature.
- 5. LT firing curve DH. Optimisation to meet comfort by extending start-up period (pre-heating) and raising temperature

Calibration LEA models

Results

Results

Without geothermal source

Scenario	CHP1 (hr)	CHP2 (hr)	Boiler 15 MW(hr)
Current	1725	1644	1850
Scenario 4	5536	3598	1093

With geothermal source

Scenario	CHP1 (hr)	CHP2 (hr)	Geothermal 5MW (hr)	Boiler 15 MW(hr)
Scenario 4	4 5536	3598	n/a	1093
Scen 4 + ge	eo 3290	2035	1185	606

Modifications

- Central installation
 - Allow different temps/track
- DH primary network
 - All by-passes closed, HEX control \rightarrow return temp
- Model-predictive controller
 - Installed 1 track, with 3 buildings
 - Sets optimised hourly supply temperatures (1 day ahead)

In operation since April 2016

rt the

Future work

- Drill geothermal source
- Expand MPC to 4 tracks
 - System wide peak shaving
 - Integrate building optimiser into MPC

