Modelling the effect of the transmitted information quality on the management of 4th Generation district heating

P. Hauranta*, L. Toutainb, B. Bourgesa, B. Lacarrièrea

a Department of Energy Systems and Environment, Institut Mines-Télécom – École des Mines de Nantes, Nantes, France.
b Department of Networks, Security and Multimedia, Institut Mines-Télécom – Télécom Bretagne – UEB, Rennes, France.

* Corresponding Author: pierrick.haurant@mines-nantes.fr
CONTENTS

1. CONTEXT
2. METHODOLOGY
3. CASE STUDY
4. RESULTS AND DISCUSSION
5. CONCLUSION & FUTURE WORK
CONTEXT

ENERGY EFFICIENCY POLICIES

→ Challenge for District Heating

4TH GENERATION DISTRICT HEATING:

- RES integration
- Storage integration
- Low temperature
- SMART

Sustainability & Competitiveness

NEEDS OF INFORMATION AND COMMUNICATION TECHNOLOGIES (ICT):

- Which technology is the most adapted?
- What impact on the DH control?

CONTEXT

WIRELESS ICT FOR SMART DH:

• Can be a cheap solution
• Can adapted for existing and new DH

BUT

• Limited transmission time and capacity
• Limited data transmission due to encoding needs
• Non negligible information losses

Need of modelling DH functioning with limited information on demand
METHODOLOGY

HEATGRID: DH MODELLING AND OPTIMIZATION TOOL

- Multiple thermal sources models
- Optimization function: linear programming
- Oriented graph formalism
- Input: load demand (IDEAL OR TRANSMITTED)

Nodes: consumer/source/prosumer
Edges: distribution
CASE STUDY

1. Profile from noised HDD decomposition of monthly consumption
2. N₇ demand 2.5 times higher than N₃, N₄ and N₅

Production

<table>
<thead>
<tr>
<th>Node</th>
<th>Energy sources</th>
<th>Installed capacity [MW]</th>
<th>Cost [€/kWh]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Biomass</td>
<td>7</td>
<td>0.01</td>
</tr>
<tr>
<td>2</td>
<td>Gaz boiler</td>
<td>30</td>
<td>0.04</td>
</tr>
<tr>
<td>6</td>
<td>Gaz boiler</td>
<td>27</td>
<td>0.05</td>
</tr>
</tbody>
</table>
CASE STUDY

Optimal heat supply scenarii
(Minute wise simulation)

Merit order respected:
1. N_1 supply the base load (all the year)
2. N_2 head backup and N_6 local backup
CASE STUDY

LoRa (Long Range Radio)

- 36 s/hour max
- 2 s for 50 bytes messages → 18 messages/hour
- Possible information losses: ~13 messages/hour → ~5 messages/hour
 → 3 sets of 3 measured variables (m, T_s, T_r)/message
 → 15 powers values/hour

3 DISTRIBUTIONS OF RECEIVED MESSAGES:

1. ‘Packet’ distribution

2. Random distribution

3. Regular distribution

RESULTS AND DISCUSSION

SHIFT OF N_6 USE: delays in turning on/off of the local backup N_6 compared to the ideal case.

![Graph showing 'Packet' distribution and changes in power P and differential power dP over the days 20, 21, and 22 January. The graphs illustrate the comparison between the actual case and the ideal case.](image-url)
RESULTS AND DISCUSSION

‘Packet’ distribution

Maximal power differences ~ 6 MW

Shift intervals durations:

<table>
<thead>
<tr>
<th>Shift cumulated time</th>
<th>Mean duration</th>
<th>Max duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>7066’ (6.10 %)</td>
<td>31’5”</td>
<td>90’</td>
</tr>
</tbody>
</table>

![Graph showing 'Packet' distribution](image)

RESULTS AND DISCUSSION

Random and Regular Distribution

Maximal power differences ~ 1 MW

Shift intervals exist and last a few minutes:

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Shift cumulated time</th>
<th>Mean duration</th>
<th>Max duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>1205’ (1.03 %)</td>
<td>4’20”</td>
<td>31’</td>
</tr>
<tr>
<td>Regular</td>
<td>2105’ (1.80 %)</td>
<td>6’25”</td>
<td>10’</td>
</tr>
</tbody>
</table>

Random distribution

Regular distribution
Symmetrical monotones: Over and under-productions are quite similar

Annual energy over and under-productions comparable

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Over-production of local backup unit ((N_6)) [MWh]</th>
<th>Energy under-production of local backup unit ((N_6)) [MWh]</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘Packet’</td>
<td>642.2 (5.19 % of AP)</td>
<td>659.2 (5.33 % of AP)</td>
</tr>
<tr>
<td>Random</td>
<td>215.1 (1.74 %)</td>
<td>215.7 (1.74 %)</td>
</tr>
<tr>
<td>Regular</td>
<td>133.0 (1.07 %)</td>
<td>134.0 (1.08 %)</td>
</tr>
</tbody>
</table>
CONCLUSION & FUTURE WORK

WIRELESS ICT ARE INTERESTING FOR SMART DH

WHATEVER THE TRANSMITTED MESSAGE DISTRIBUTION:

→ LOW IMPACT OF ENERGY SYSTEMS MANAGEMENT CONNECTED TO DH

1. Regular or random distribution: $\Delta P \sim 1$ MW – shift intervals ~ 5 mn
2. ‘Packet’ distribution: $\Delta P \sim 6$ MW – shift intervals ~ 30 mn

NOW, LET’S SEE THE CONSEQUENCES CONSIDERING THE HEAT TRANSPORTATION TIMES AND INERTIA OF THE DH!
Thank you

* Corresponding Author: pierrick.haurant@mines-nantes.fr