Smart energy systems
A study of possible district heating solutions for the Aarup area.

Jeppe Mols & Ulrik Jørgensen
Agenda

• Introduction and framework conditions
• Scenarios
• Methods
• Results
• Conclusions
• Questions
Introduction and framework conditions

- Based on long term climate goals
- Town of Aarup
 - Located on Funen
 - 3120 inhabitants
 - 30,800 MWh-heat/year

Current heat sources

- Natural gas; 25,279,150; 82%
- Oil; 3,543,024; 12%
- Wood pellets, straw etc.; 822,706; 3%
- Electric heating; 725,379; 2%
- Heat pumps; 429,466; 1%
Scenarios

• Reference scenarios
 – Current heating system
 – Individual heat pump

• District heating scenarios
 – Nine scenarios with 60°C forward/37°C return
 – Nine scenarios with 40°C forward/20°C return

Technologies: Woodchip boiler, groundwater heat pump and solar heating
Methods

• Termis model of the DH grid
 – Heat loss
 • 60°C/37°C: 17 % heat loss
 • 40°C/20°C: 9 % heat loss
 – Grid investment costs

• EnergyPRO models of each scenario

• Private- and socioeconomic analysis of each scenario
 – Private economically includes taxes and VAT
 – Socioeconomic is the socioeconomic cost
Results

• Socioeconomic results
 – Individual heat pumps: 573 DKK (77€)/MWh-heat
 – Current configuration: 585 DKK (78,5€) /MWh-heat
 – DH with 10 % solar heat, rest HP, 60°C/37°C: 633 DKK (85 €) /MWh-heat

• Private economical results:
 – Individual heat pumps: 898 DKK (120,5 €)/MWh-heat
 – Current configuration: 909 DKK (122 €)/MWh-heat
 – DH with 10 % solar, 2 MW GW HP, rest woodchip boiler 60°C/37°C : 750 DKK (100,5 €)/MWh-heat
Conclusions

• Socioeconomically:
 – Individual scenarios are better
 – Heat pumps are preferable
 – Best DH scenario: 10% solar heat and rest heat pumps

• Private economically:
 – DH scenarios are better
 – HP are feasible in DH system

• Feasibility of 4th generation DH
Questions
Thank you for listening