An integrated gas grid model for upgraded biogas in future renewable energy system

Abid Rabbani
SDU Life Cycle Engineering
University of Southern Denmark
Feasibility study on utilizing natural gas grid for upgraded biogas

- Are there any bottlenecks due to flow capacities of the gas grid?
- Can the low pressure distribution grid be used only for raw biogas and medium pressure grid for upgraded gas only?
- To what extent can these grids balance the supply and demand?
- How much raw & upgraded biogas contribute to the electricity, heat and transport demands?
- How much gas would be exported/ imported? And under what operating conditions?
The Funen Case

- Adequate system size for analyses
- Developed natural gas network
- Could be replaced entirely by biomethane
- Availability of feedstock

Modelling approach:
An integrated grid model in “SIFRE” tool
Balancing supply and demand for electricity, DH, Industrial process heat & transport sector

03 October 2016
Bio-Methane Potential for Fyn

<table>
<thead>
<tr>
<th>Feedstock</th>
<th>Biogas production (mio Nm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manure</td>
<td>2 PJ</td>
</tr>
<tr>
<td>With Straw</td>
<td>5,7 PJ</td>
</tr>
</tbody>
</table>

| No. of plants | 10 |
| Estimated size of plant | 28 mio Nm³/y |

Supply

- DH Networks
- 80 bar pipeline
- 17 bar pipeline
- 4 bar pipeline
Funen gas demand

Data from NGF Nature Energy

- Funen gas demand: 5,62 PJ
- Industrial demand: 2,84 PJ
- % of total: 51%
- Convertibility to el.: 50-75%

Color graduation: light to dark for % of total energy

- 80 bar pipeline
- 17 bar pipeline
- 4 bar pipeline
Compressed Biomethane Refilling stations

<table>
<thead>
<tr>
<th>Area</th>
<th>CNG stations</th>
<th>Annual Demand (PJ)</th>
<th>Peak Load (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>West Fyn</td>
<td>2</td>
<td>0.38</td>
<td>36</td>
</tr>
<tr>
<td>North Fyn</td>
<td>1</td>
<td>0.19</td>
<td>18</td>
</tr>
<tr>
<td>Central Fyn</td>
<td>3</td>
<td>0.58</td>
<td>55</td>
</tr>
<tr>
<td>East Fyn</td>
<td>2</td>
<td>0.38</td>
<td>36</td>
</tr>
<tr>
<td>Southwest Fyn</td>
<td>3</td>
<td>0.58</td>
<td>55</td>
</tr>
<tr>
<td>Southeast Fyn</td>
<td>2</td>
<td>0.38</td>
<td>36</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>2.5</td>
<td>158</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LNG Terminal</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>1</td>
<td>2.5</td>
<td>158</td>
</tr>
</tbody>
</table>

03 October 2016
Localized gas grid grid of Funen

- Total 6 units of supply and Demand
- Each unit mainly consisting of 17 & 4 bar gas grid
- All units connected to 80 bar transmission line
- Different supply and demand characteristics
Decentralized CHPs mode with H2 assisted upgrading
Local biogas CHPs and 1 Central CHP plant

West Fyn
18 MW_{gas} → 15 MW_{gas}
7 MW_{e}
31 MW_{gas} (@1 bar)
2x18 MW_{gas}
Southwest Fyn
18 MW_{gas} → 15 MW_{gas}
7 MW_{e}
31 MW_{gas} (@1 bar)
2x18 MW_{gas}

North Fyn
18 MW_{gas} → 12 MW_{gas}
7 MW_{e}
31 MW_{gas} (@1 bar)
18 MW_{gas}
Central Fyn
2x18 MW_{gas} → 2x7 MW_{e}
2x31 MW_{gas} (@1 bar)
9 MW_{gas}

East Fyn
2x18 MW_{gas} → 2x7 MW_{e}
2x31 MW_{gas} (@1 bar)
31 MW_{gas} (@1 bar)
2x18 MW_{gas}
Southeast Fyn
2x18 MW_{gas} → 2x7 MW_{e}
2x31 MW_{gas} (@1 bar)
31 MW_{gas} (@1 bar)
2x18 MW_{gas}

Supply units
Demand units
Compressor
High pressure pipeline ~ 80 bar
Medium pressure grid ~ 17 bar
Low pressure grid ~ 4 bar

West Fyn: 18 MW_{gas}, 7 MW_{e}, 31 MW_{gas} (@1 bar), 2x18 MW_{gas}
North Fyn: 18 MW_{gas}, 7 MW_{e}, 31 MW_{gas} (@1 bar), 18 MW_{gas}
East Fyn: 2x18 MW_{gas}, 2x7 MW_{e}, 2x31 MW_{gas} (@1 bar), 9 MW_{gas}
Southwest Fyn: 18 MW_{gas}, 7 MW_{e}, 31 MW_{gas} (@1 bar), 2x18 MW_{gas}
Central Fyn: 2x18 MW_{gas}, 2x7 MW_{e}, 2x31 MW_{gas} (@1 bar), 9 MW_{gas}
Southeast Fyn: 2x18 MW_{gas}, 2x7 MW_{e}, 2x31 MW_{gas} (@1 bar), 27 MW_{gas}

03 October 2016
60% biogas upgraded

CH4 upgrading

Share of upgraded gas
• Medium pressure grid in stress during Centralized CHP production

- CH4 flows within areas
 - Decentralized
 - Central CHP

- High consumption in MP grid ~ upgraded gas volume
- Different compression levels depending on the upgrading technology

- Electricity consumption of compressors
 - Compression for HP injection: 29%
 - Compression for MP injection: 46%
 - Compression for LP injection: 24%
Maximum Biogas Capacity in low-pressure grid

Pipeline characteristics
- Material: PE Plastic
- Diameter: 107 mm
- Friction factor: 0.01
- Length: 1 km

Minimum Biomethane pressures

Pipeline characteristics
- Material: Steel
- Diameter: 312 mm
- Friction factor: 0.015
- Length: 20 km

Gas demand (MW)

Minimum Pipeline Pressure (bar)
Gas demand (MW)
Junction Pressure (P1) Bar
Pressure at outlet (P2) Bar
Total pressure loss (DP) %

Total pressure loss

Pipeline characteristics
- Material: PE Plastic
- Diameter: 107 mm
- Friction factor: 0.01
- Length: 1 km

Minimum Biomethane pressures

Pipeline characteristics
- Material: Steel
- Diameter: 312 mm
- Friction factor: 0.015
- Length: 20 km
Energy in different sectors

- Biomethane grid fully catering to Transport sector

- Though gas import is 15% in volume, import actually occurs 38% of time

Primary Energy Supply

- Biogas: 52%
- Electricity: 30%
- Compression: 15%
- Imported Gas: 3%

Production vs Demand
Concluding remarks

- The system is capable of balancing the supply & demand majority of the time
- 60% of biogas is upgraded to biomethane
- More strain is observed on MP biomethane grid
- Improvements through:
 - Optimization of the storages to increase flexibility of upgrading
 &
 - Operational strategies for compressors to minimize gas imports
Thank you