

Cold Water District Heating and Cooling Systems as Flexible Energy Exchange Systems

– a Promising Concept for the Future?

4DH Conference 12th – 13th of September 2017 Copenhagen Linn Laurberg Jensen, Dadi Sveinbjörnsson

Agenda

- ∞ Introduction to the Flexynets project
- ∞ Network design and layout
- Network and storage

∞ Project partners

Learn more: http://www.flexynets.eu

15/09/2017

FLEXYNETS

- FLEXYNETS will develop, demonstrate and deploy a new generation of intelligent DHC networks that reduce energy transportation losses by working at "neutral" (i.e. 10-25 °C) temperature levels
- Reversible heat pumps will be used to exchange heat with the DHC network on the demand side, providing the necessary cooling and heating for the buildings
- ∞ High potential for use of excess heat

FLEXYNETS – Pros and Cons

- Neutral temperatures → Reduce energy losses
- ∞ Lower investments in pipes
- ∞ Contemporary heating and cooling supply
- ∞ Integrate multiple energy (generation) sources
- ∞ Flexibility
- ∞ Larger mass flow
- ∞ Larger pipes
- ∞ Complicated control

FLEXYNETS – Considerations

- - ∞ Flow rate
 - ∞ Required diameter
 - ∞ Pumping energy
 - ∞ Insulation materials and thicknesses
- ∞ Investments
- ∞ Energy effectivity (exergy)

FLEXYNETS - Network Design and Layout

Network Design and Layout

15/09/2017

Network Design and Layout

∞ Model inputs → Design conditions

The analysis is based on the two following main assumptions setting the base for the analysis:

∞ Conventional DH Series 3 pipes 78/41 °C*

∞ FLEXYNETS Series 1 pipes 25/10 °C

∞ Ground temperature of 8 °C

^{*)} For traditional DH this corresponds to average values for Denmark, Benchmarking 2011/12.

Network Design and Layout – Conclusions so far

- → Heating demand as governing demand for this analysis (DK)
- ∞ Ring structure can be suitable and feasible
 - Several heat sources
 - ∞ Cover a larger fraction by excess heat
- ∞ Significantly reduced heat losses (-75 %)
- ∞ High dependence on local conditions
- ∞ Further analysis → Network and storage

Excess Heat and Large-scale Storages

Large-scale thermal energy storages

∞ Considered storage types:

- ∞ Pit storage (PTES)
- ∞ Borehole storage (BTES)

15/09/2017

Investment costs

- Large tank thermal storage (TTES)
- Pit thermal storage (PTES)
- Borehole thermal storage (BTES)
- Aquifer thermal storage (ATES)

Temperature levels and investment costs

FLEXYNETS PlanEnergi

- Low ΔT in the FLEXYNETS network (5-15 K)
 →Low storage density.
- - Thermal storage can balance heat supply and demand.
 - Heat storage at high temperatures is more economical.
- Direct HT heat transmission pipes from heat sources to storages could be feasible.

15/09/2017

How far away from the network can excess heat be sourced?

∞ Assumptions:

- 40 €/MWh avg. network heat price.
- Free 80°C excess heat from industry.
- → Transmission up to approx. 40 km could be economical.
- ▼ TRNSYS modelling of excess heat, transmission and storages is part of further work.

Conclusions

- Ring structure can be suitable and feasible when several heat sources are available and/or a large fraction of the demand can be covered by excess heat
- ∞ Significantly reduced heat losses (-75 %), but need of higher use of pumping energy and electricity for local heat pumps
- ∞ In case industrial excess heat is available, long transmission pipelines and centralized heat storages can be economical.
- ∞ High dependence on local conditions

FOR MORE INFORMATION

WWW.FLEXYNETS.EU WWW.PLANENERGI.EU

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 649820

